Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied.
Published in | International Journal of Materials Science and Applications (Volume 3, Issue 5) |
DOI | 10.11648/j.ijmsa.20140305.29 |
Page(s) | 268-273 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Graphene Möbius Strips, Magnetic Moment, and Spin-Dependent Density of States
[1] | C-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, Phys. Rev. Lett. 105, 235501 (2010). |
[2] | J. Gravesen and M. Willatzen, Phys. Rev. A 72, 032108 (2005). |
[3] | N. Zhao, H. Dong, S. Yang, and C.P Sun, Phys. Rev. B 79, 125440 (2009). |
[4] | D .J. Ballon and H. U. Voss, Phys. Rev. Lett. 101, 247701 (2008). |
[5] | S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, and N. Hatakenaka, Nature(London) 417, 397 (2002). |
[6] | D. Ajami, O. Oeckler, A. Simon, and R. Herges, Nature (Londen) 426, 819 (2003). |
[7] | C. Lee, X. Wei, J. W. Kysar, and J. Hone, Sceince, 321, 385 (2008). |
[8] | D. E. Jiang and S. Dai, J. Phys. Chem. C 112, 5438 (2008). |
[9] | M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn, 65, 1920 (1996). |
[10] | Y-W. Son, M. L. Cohen, and S. G. Louie, Nature (Londen) 444, 347 (2006). |
[11] | O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008). |
[12] | L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99, 116802 (2007). |
[13] | S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82, 245412 (2010). |
[14] | K.WakabayashiandK.Harigaya,J.Phys.Soc.Jpn.72,998(2003). |
[15] | R. Herges, Chem. Rev 106, 4820 (2006). |
[16] | E. W. S. Caetano, V. N. Freire, S. G. dos Santos, D. S. Galvao, and F. Sato, J. Chem. Phys. 128, 164719 (2008). |
[17] | Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Phys. Rev. B 80, 195310 (2009). |
[18] | M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). |
[19] | AD Güçlü, M Grabowski, P Hawrylak, Phys. Rev. B 87, 035435 (2013). |
[20] | SY Yue, QB Yan, ZG Zhu, HJ Cui, QR Zheng, G Su, Carbon 71, 150 (2014). |
[21] | X. Wang, X. Zhang, M. Ni, L. Zou, and Z. Zeng, Appl. Phys. Lett., 97, 123103 (2010). |
[22] | J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. 1996). |
[23] | A. D. Becke, J. Chem. Phys. 98, 5648 (1993). |
[24] | E. Rudberg, P. Salek, and Y. Luo, Nano Lett. 7, 2211 (2007). |
[25] | Er-Jun Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou, Appl. Phys. Lett. 91, 243116 (2007). |
[26] | S. Yang and M. Kertesz, J. Phys. Chem. A. 110, 9771 (2006). |
[27] | K. D. Dobbs and W. J. Hehre, J. Comput. Chem. 8, 880 (1987). |
[28] | P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, and S. K. Nayak, Appl. Phys. Lett. 91, 042101 (2007). |
[29] | E. L. Starostin and G. H. M. Van Hejden, Nature Materials 6, 563 (2007). |
[30] | Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. Lett. 97, 216803 (2006). |
[31] | J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1994). |
[32] | Er-Jum Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou, Appl. Phys. Lett. 91, 243116(2007). |
[33] | H. Zheng and W. Duley, Phys. Rev. B 78, 155118 (2008). |
APA Style
Hossein Mazidabadi, Hamidreza Simchi, Mahdi Esmaeilzadeh. (2014). Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach. International Journal of Materials Science and Applications, 3(5), 268-273. https://doi.org/10.11648/j.ijmsa.20140305.29
ACS Style
Hossein Mazidabadi; Hamidreza Simchi; Mahdi Esmaeilzadeh. Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach. Int. J. Mater. Sci. Appl. 2014, 3(5), 268-273. doi: 10.11648/j.ijmsa.20140305.29
AMA Style
Hossein Mazidabadi, Hamidreza Simchi, Mahdi Esmaeilzadeh. Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach. Int J Mater Sci Appl. 2014;3(5):268-273. doi: 10.11648/j.ijmsa.20140305.29
@article{10.11648/j.ijmsa.20140305.29, author = {Hossein Mazidabadi and Hamidreza Simchi and Mahdi Esmaeilzadeh}, title = {Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach}, journal = {International Journal of Materials Science and Applications}, volume = {3}, number = {5}, pages = {268-273}, doi = {10.11648/j.ijmsa.20140305.29}, url = {https://doi.org/10.11648/j.ijmsa.20140305.29}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20140305.29}, abstract = {Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied.}, year = {2014} }
TY - JOUR T1 - Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach AU - Hossein Mazidabadi AU - Hamidreza Simchi AU - Mahdi Esmaeilzadeh Y1 - 2014/09/30 PY - 2014 N1 - https://doi.org/10.11648/j.ijmsa.20140305.29 DO - 10.11648/j.ijmsa.20140305.29 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 268 EP - 273 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20140305.29 AB - Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied. VL - 3 IS - 5 ER -